
ORIE 5355: People, Data, & Systems
Lecture 7: Recommendations – from predictions

to decisions
Nikhil Garg

Course webpage: https://orie5355.github.io/Fall_2021/

https://orie5355.github.io/Fall_2021/

Last time: Prediction (filling in missing entries)

0.4

10.2

0.30.5

0.21

Avatar LOTR Matrix Pirates

Alice

Bob

Carol

David

2
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org

Matrix factorization – “Latent factor” models

Once we have 𝑢𝑖 ∈ 𝑅𝑑 for each user, vj ∈ 𝑅𝑑 for each item

Such that 𝑢𝑖 ⋅ 𝑣𝑗 ≈ ෞ𝑟𝑖𝑗 (the rating user gave to the item in the past)

Then, for every pair of items and users that have not been rated:

Set predicted rating rij = 𝑢𝑖 ⋅ 𝑣𝑗

𝑑

𝑑

Example vectors with d=2

Embeddings | Machine Learning Crash Course | Google Developers

https://developers.google.com/machine-learning/crash-course/embeddings/video-lecture

Matrix factorization: Pros and Cons
+: Don’t need to guess at what features matter

–: Need historical data about each item and user

–: Hard to provide explanations

In practice, matrix-factorization-based methods (and modern
deep learning successors) are used when you have enough data

5

“Cold start” with matrix factorization
• Chief challenge in many settings: you don’t have (a lot of) historical data on

some new users or new items

• Idea: Combine matrix factorization with content- and user- similarity based
approaches

Step 1: Train matrix factorization model with dataset

Step 2: For new users [items] find “nearby” users [items] to them and initialize
their vector using the nearby users [items]

i.e., pretend their vector is the same as those of nearby users

Step 3: Over-time, update their vectors using their own history

• Determining “nearby” items: must use data like genre and demographics

• Key idea in many settings: At first without individual data, pretend
someone is like the “average” user. Then with more data, start doing
personalized things

Step 2: Vectors from “nearby” users

Suppose we have a demographic vector for each new and old user:
[age, ethnicity, gender, income, …]

• Simple: K nearest neighbors
• Define a distance function on the vector of demographics
• For each new user, find the K closest old users and average their vectors
• Challenge: defining the distance function!

• Also simple: train matrix factorization with known user vector
• Instead of learning vector 𝑢𝑖 ∈ 𝑅𝑑 for each user, vj ∈ 𝑅𝑑 for each item
• Set 𝑢𝑖 to the demographic vector, and just learn vj ∈ 𝑅𝑑 for each item

• Many other approaches:
Train a model using the demographics to predict 𝑢𝑖

𝑘 , each dimension 𝑘 of 𝑢𝑖, using all
the old users

Questions on prediction?

What to do with predictions? Naïve method

Train a single matrix factorization model using some data (what data?)
→I have predictions for each item and each user

For example, predict rij = 𝑢𝑖 ⋅ 𝑣𝑗

For each user 𝑖, simply recommend the best item
argmax𝑗 𝑢𝑖 ⋅ 𝑣𝑗

(Or K best items):

argmax𝑗1…𝑗𝐾 ෍

ℓ=1

𝑢𝑖 ⋅ 𝑣𝑗ℓ

Issues with naïve method

• Capacities
What if you only have 5 of item 𝑗, and everyone likes item 𝑗?

• Multi-sided preferences
Recommendations in freelancing markets (workers matched with clients),
dating apps, volunteer platforms, etc

• Challenges in recommending sets of items
• Diversity of items recommended
• Behavioral effects? Recommending one item makes another item more

popular

Today: going from predictions → recommendations

Dealing with capacity constraints

Overview

• What’s the challenge, exactly?

• Solving an “easier” problem: “maximum weight matching in a
bipartite graph”

• Insights from the easier problem to real-life applications

The challenge

• In many (non-online-media) settings, you are recommending “items”
with capacity constraints:
• You have a finite number of each item in your warehouse

• An AirBnb can only be booked by one customer at a time

• Workers can’t work for every client; a client can only hire 1 person

• People on dating apps – can’t talk to everyone

• If you ignore these capacity constraints, then everyone may be
recommended the same (limited) item

Some people will be left out

• (How) should you factor in capacity in your recommendations?

The challenge, formally (simple version)

• You have 𝑁 users and 𝑀 items, but only 1 copy of each item

• You want to recommend 1 item j(i) to each user

• Each user i will consume the that you recommend them

• You want to maximize the sum of predicted ratings of
consumed items

σ𝑖 r𝑖𝑗(𝑖)

• However, each item can only be recommended once
𝑗 𝑖 ≠ 𝑗 𝑖′ unless 𝑖 = 𝑖′

Solving the simple case

It turns out that this
simple case is called
“maximum weight
matching”

Draw a graph with users
on one side and items on
the other

OSA | Simulation and FPGA-Based
Implementation of Iterative Parallel
Schedulers for Optical Interconnection
Networks (osapublishing.org)

Users Items

rij

https://www.osapublishing.org/jocn/abstract.cfm?uri=jocn-9-4-C76

Solving the simple case

It turns out that this
simple case is called
“maximum weight
matching”

Draw a graph with users
on one side and items on
the other

Find the “maximum
weight matching”

Users Items

rij

Users Items

OSA | Simulation and FPGA-Based
Implementation of Iterative Parallel
Schedulers for Optical Interconnection
Networks (osapublishing.org)

scipy.optimize.linear_
sum_assignment —
SciPy v1.7.1 Manual

https://www.osapublishing.org/jocn/abstract.cfm?uri=jocn-9-4-C76
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html

Insights from the simple case

In general, the actual solution might be
combinatorial – a complex function of all
the joint preferences

• Some users are not matched with their
most preferred item!

• Some items are not matched with the
user that likes it the most!

• If a user likes multiple items similarly,
maybe they get their 2nd choice

• If only 1 user likes some item, make
sure that item and user are matched

Users Items

rij

Users Items

OSA | Simulation and FPGA-Based
Implementation of Iterative Parallel
Schedulers for Optical Interconnection
Networks (osapublishing.org)

https://www.osapublishing.org/jocn/abstract.cfm?uri=jocn-9-4-C76

Challenges in using max weight matchings

• Everyone doesn’t show up at once
New users come in tomorrow – have to leave items for them

• You can’t “match” people, only recommend them items
Someone may not consume the item!

• “Capacity” constraints are also soft
• New items are shipped to warehouse all the time

• Maybe you can spend more money to expedite shipment

• Computational constraints in rerunning large scale max weight
matchings with every new user

What to do in practice

• Finding an “great” solution requires a lot of careful data science +
modeling work

• Some reasonable heuristics:
“Batching”: If you don’t have to give recommendations immediately, wait for
some number of users to show up and solve max weight matching (for example,
every hour)

“Index” policies: For each user, create a “score” for each item and just choose
recommend the item(s) with the highest score(s)

Index policies

• We want a score (index) between each item j and user i: sij

• Then, for each item, pick the item with the max score: argmax𝑗 sij

• We’ve already seen an example: if the only thing that matters is
predicted rating, then sij = rij

• Why index policies?
• They’re efficient: for each user, only need to consider their scores

• They can be explained to users

• All information about other users is contained in how score is constructed

Constructing index policies

What matters in constructing an index policy?
• The higher the ratings by other users for an item, the smaller sij should be

• The less capacity C𝑗 left for the item, the smaller sij should be

An example score function

sij = 𝛼𝑗
𝑟𝑖𝑗

ഥ𝑟𝑗
𝐶𝑗
𝛽

where 𝛼𝑗 , 𝛽 are some (learned) parameters over time

𝛼𝑗: Item is “special” and should be over-recommended

𝛽 : Relative importance of capacity. (𝛽 = 0 means ignore capacity)

Many possible score functions! Should be application specific

Capacity constraints lessons

• If you just recommend each user their highest predicted scores, then
you might not be globally efficient

• Even if you can’t implement it, taking intuition from the “optimal”
solution is often valuable

• Index policies: even if “optimal” solution requires combinatorial
constraints, “practical” solution can decompose the problem

Multi-sided preferences

Multi-sided preferences

• In many modern online markets, both sides have preferences
Freelancing markets (workers matched with clients), dating apps, volunteer
platforms, etc

• A match only happens if both sides like each other
And have capacity…

The challenge, formally (simple version)

• You have 𝑁 workers and 𝑁 clients
• Each worker can only work with 1 client; each client only hires 1

worker

• Each side has preferences (predicted ratings) over the other
side

• You want to create “good” matches
• Good for who? Workers? Clients? Some combination?

• Easier goal: create “stable” matches

“Stable matching” in 1 slide

• Stable matching:
• Given rank order preferences from each

person on each side

• Match the sides such that matches are
“stable”: No potential pair wants to abandon
their current partners for each other.

• Efficient to find: “Gale-Shapley algorithm”

• Used to allocate:
Medical students to residencies

Students in NYC to high schools

Challenges in using stable matching

Same as from using maximum weight matchings
• Everyone doesn’t show up at once

New users come in tomorrow – have to leave items for them

• You can’t “match” people, only recommend them items
Someone may not consume the item!

• “Capacity” constraints are also soft
• New items are shipped to warehouse all the time

• Maybe you can spend more money to expedite shipment

• Computational constraints in rerunning large scale stable matchings with every new user

Just more complicated with both sides now having preferences

Intuition from stable matching to
recommendations
What matters in constructing an index policy?

• The higher the ratings by other workers/clients, the smaller sij should be

• If either worker i or client j has been recommended to many other people in
the past, the smaller sij should be

Equivalent of “capacity”

• Now, both i’s rating for j and j’s rating for i matter

An example score function

sij = 𝛼𝑗𝛼𝑖
min(𝑟𝑖𝑗 , 𝑟𝑗𝑖)

ഥ𝑟𝑗ഥ𝑟𝑖
𝐶𝑗
𝛽
𝐶𝑖
𝛽

Announcements

• Guest lecture Amy Zhang on Monday 9/27
• Regular class-time

• Remote only – please log in using zoom [Not from classroom]

Questions?

